BSC PHYSICS

Semester 1 – Core Course I

PHY1B01: METHODOLOGY OF SCIENCE AND BASIC MECHANICS

	Course Outcome	PSO	CL	KC
CO1	Student will be able to understand the features, methods and limitations	PSO1	U	С
	of science			
CO2	Able to understand and apply the basic concepts	PSO1	Ap	С,
	of Newtonian Mechanics and work-energy theorem to physical			Р
	systems			
CO3	Student will be able to understand and apply the rotational dynamics of	PSO1	Ap	С,
	rigid bodies			Р
CO4	Understand the basic ideas of elasticity	PSO1	U	C,P

36 hours (Credit - 2)

Abbreviations used:

CL – Cognitive level; U – understand; Ap – apply; An – analyze; C-create; KC – Knowledge category; C – conceptual; F – factual; P – procedural

Semester 2 - Core Course II

PHY2B02: MECHANICS

36 hours (Credit - 2)

	Course Outcome	PSO	CL	KC
CO1	Student will be able to understand the features of non-inertial systems	PSO1	U	С
	and fictitious forces			
CO2	Student will be able to understand and analyze the features of central	PSO1	An	С,
	forces with respect to planetary motion			Р
CO3	Student will be able to understand and analyze the basics ideas of	PSO1	U	С,
	harmonic oscillations and wave motion			Р

Semester 3 - Core Course III

PHY3B03: ELECTRODYNAMICS I

54 hours (Credit - 3)

	Course Outcome	PSO	CL	КС
CO1	Student will be able to understand the fundamentals of vector	PSO1	U	С
	calculus			
CO2	Student will be able to understand and analyze the electrostatic	PSO1	U,	С,
	properties of physical systems and the mechanism of electric field in		An	Р
	matter			
CO3	Student will be able to understand and analyze the magnetic	PSO1	U,	С,
	properties of physical systems		An	Р

Semester 4 - Core Course IV

PHY4B04: ELECTRODYNAMICS II

54 hours (Credit - 3)

	Course Outcome	PSO	CL	KC
CO1	Student will be able to understand the basic concepts of	PSO1	U	С
	electrodynamics			
CO2	Will be able to understand and analyze the properties of	PSO1	An	С,
	electromagnetic waves			Р
CO3	Student will be able to understand the behavior of transient currents	PSO1	U	С
CO4	Student will be able to understand the basic aspects of ac circuits and	PSO1	U,	С,
	apply electrical network theorems to circuits		An	Р

Semester 5 – Core Course –VI

PHY5B06: COMPUTATIONAL PHYSICS

	Course Outcome	PSO	CL	кс
CO1	Student will be able to understand the Basics of Python programming	PSO4	U,	С
	and will acquire skills in writing and executing simple programs .		Ар	
CO2	Student will be able to understand the applications of Python modules	PSO4	U	С
CO3	Student will be able to understand the basic techniques of numerical	PSO4	U,	С
	analysis and apply to physical systems		Ар	

Semester 5- Core Course –VII

PHY5B07: QUANTUM MECHANICS

54 hours (Credit – 3

	Course Outcome	DEO	CI	VC
	Course Outcome	P30	CL	КU
CO1	Student will be able to understand the particle and wave properties of	PSO2	U	С
	electromagnetic radiation			
CO2	Student will be able to understand the Rutherford – Bohr model of the	PSO2	U	С
	atom			
CO3	Student will be able to understand and apply the Schrödinger equation	PSO2	Ар	С,
	to simple physical systems and apply the principle of wave mechanics			Р
	to the Hydrogen atom			

Semester 5 - Core Course VIII

PH5B08: OPTICS

Course Outcome	PSO	CL	KC

CO1	Student will be able to understand the fundamentals of Fermat's	PSO2	U	С
	principles and geometrical optics			
CO2	Student will be able to understand and apply the basic ideas of	PSO2	Ap	С,
	interference and diffraction of light			Р
CO3	Student will be able to understand and apply the basic ideas of	PSO2	U,	С
	polarization of light		Ap	
CO4	Student will be able to describe the basic principles of holography	PSO2	U	С
	and fibre optics			

Semester 5 – Core Course –IX

PHY5B09: ELECTRONICS (ANALOG & DIGITAL)

	Course Outcome	PSO	CL	KC
CO1	Student will be able to understand the basic principles of rectifiers	PSO3	U	С
	and dc power supplies			
CO2	Student will be able to understand the principle and working of	PSO3	U,	С,
	transistors and will be able to design transistor amplifiers and		Ap	Р
	oscillators			
CO3	Student will be able to understand the basic operation of Op –Amp	PSO3	U	С
	and its applications			
CO4	Student will be able to understand the basics of digital electronics	PSO3	U	С

PHY6B10: THERMODYNAMICS

54 hours (Credit - 3)

	Course Outcome	PSO	CL	кс
	Student will be able to understand the zero, first and second laws of			
CO1	Thermodynamics and applications	PSO2	U	С
	Will be able to understand the thermodynamics description of the ideal			
CO2	gas	PSO2	U	С
CO3	Student will be able to understand the basic ideas of entropy	PSO2	U	С
	Student will be able to understand and analyze the concepts			
CO4	of thermodynamic potentials and phase transitions	PSO2	Az	С

Semester 6 – Core Course XI

PHY6B11: STATISTICAL PHYSICS, SOLID STATE PHYSICS, SPECTROSCOPY &PHOTONICS

	Course Outcome	PSO	CL	KC
CO1	Student will be able to understand the basic principles of statistical	PSO2	U	С
	physics and its applications			
CO2	Will be able to understand the basic aspects of crystallography in solid	PSO2	U	С
	state physics			
CO3	Student will be able to understand the basics ideas of microwave and	PSO2	U	С
	infra red spectroscopy			
CO4	Student will be able to understand the fundamental ideas and	PSO2	U	С
	applications of photonics			

Semester 6 – Core Course XII

PHY6B12: NUCLEAR PHYSICS AND PARTICLE PHYSICS

	Course Outcome	PSO	CL	KC
CO1	Understand the basic aspects of nuclear	PSO2	U	С
	structure and fundamentals of radioactivity			
CO2	Describe the different types of nuclear	PSO2	U	С, Р
	reactions and their applications			
CO3	Understand the principle and working of	PSO2	U	С, Р
	particle detectors			
CO4	Describe the principle and working of	PSO2	U	С, Р
	particle accelerators			
CO5	Understand the basic principles of	PSO2	U	С
	elementary particle physics			

54 hours (Credit - 3)

Semester 6 - Core Course XIII

PHY6B13: RELATIVISTIC MECHANICS AND ASTROPHYSICS

	Course Outcome	PSO	CL	КС
CO1	Understand the fundamental ideas of	PSO2	U	С
GOA	special relativity	DCCC	* *	9
CO2	relativity and cosmology	PSO2	U	С
CO3	Understand the basic techniques used in Astronomy	PSO2	U	С
CO4	Describe the evolution and death of stars	PSO2	U	С
CO5	Describe the structure and classification of	PSO2	U	С
	Galaxies			

Semester 6 | - Core Course XIV (Elective)

PHY6B14 (EL1): BIOMEDICAL PHYSICS

54 hours (Credit - 3)

	Course Outcome	CL	KC
CO1	Understand the basic principles of	U	С
	Biophysics		
CO2	Understand the fundamentals of medical	U	С
	Instrumentation		
CO3	Understand the principles of ultrasound	U	С
	And x-ray imaging		
CO4	Understand the basic principles of NMR	U	С
CO5	Describe the applications of lasers in	U	С
	Medicine		

Semester 6 - Core Course XIV (Elective)

PHY6B14 (EL2): NANOSCIENCE AND TECHNOLOGY

54 hours (Credit - 3)

	Course Outcome	CL	KC
CO1	Understand the elementary concepts of nanoscience	U	С
CO2	Understand the electrical transport mechanisms in nanostructures	U	С
CO3	Understand the applications of quantum mechanics in nanoscience	U	С
CO4	Understand the fabrication and characterization techniques of nano materials	U	С
CO5	Enumerate the different applications of nanotechnology	U	С

Semester 6 - Core Course XIV (Elective)

PHY6B14 (EL3): MATERIALS SCIENCE

	Course Outcome	CL	KC
C01	Understand the basic ideas of bonding in materials	U	C
CO2	Describe crystalline and non crystalline materials	U	C
CO3	Understand the types of imperfections and diffusion mechanisms in solids	U	C
CO4	Describe the different properties of ceramics and polymers	U	С
CO5	Describe the different types of material analysis techniques	U	С

Semesters 1 to 4 - Core Course V

PHY4B05: PRACTICAL - I

36 hours in each semester (Credit - 5)

	Course Outcome	CL	KC
CO1	Apply and illustrate the concepts of properties of matter through experiments	Ар	Р
CO2	Apply and illustrate the concepts of electricity and magnetism through	Ар	Р
	experiments		
CO3	Apply and illustrate the concepts of optics through experiments	Ap	Р
CO4	Apply and illustrate the principles of electronics through experiments	Ap	Р

Semesters 5-6 - Core Course XV

PHY6B15: PRACTICAL - II

72 hours in each semester (Credit - 5)

	Course Outcome	CL	KC
CO1	Apply and illustrate the concepts of properties of matter through experiments	Ap	Р
CO2	Apply and illustrate the concepts of electricity and magnetism through	Ap	Р
	experiments		
CO3	Apply and illustrate the concepts of optics and spectroscopy through	Ар	Р
	experiments		
CO4	Apply and illustrate the principles of heat through experiments	Ap	Р

Semester 5-6 - Core Course XVI

PHY6B16: PRACTICAL - III

72 hours in each semester (Credit - 5)

	Course Outcome	CL	KC
CO1	Apply and illustrate the principles of semiconductor diode and transistor	Ap	Р
	through experiments		
CO2	Apply and illustrate the principles of transistor amplifier and oscillator through	Ap	Р
	experiments		
CO3	Apply and illustrate the principles of digital electronics through experiments	Ap	Р
CO4	Analyze and apply computational techniques in Python programming	Ap	Р

Semester 5-6 - Core Course XVII

Course: PHY6B17(P) - PROJECT

36 hours in each semester (Credits: 2)

	Course Outcome	CL	КС
CO1	Understand research methodology	U	Р
CO2	Understand and formulate a research project	С	Р
CO3	Design and implement a research project	С	Р
CO4	Identify and enumerate the scope and limitations of a research project	С	Р

Semester 5-6 - Core Course XVII

PHY6B17(R): RESEARCH METHODOLOGY (In lieu of Project)

36 hours in each semester (Credits: 2)

	Course Outcome	CL	KC
CO1	Understand research methodology	U	С,
			Р
CO2	Understand the concept of measurement in research	C	С,
			Р
CO3	Understand the significance and limitations of experimentation in research	C	C,P
CO4	Understand and formulate a research project, ethics and responsibility of	C	C,P
	scientific research		

Semester 5 – Open Course I

PHY5D01(1): NON CONVENTIONAL ENERGY SOURCES

	Course Outcome	CL	KC
CO1	Understand the importance of non conventional energy sources	U	С
CO2	Understand basic aspects of solar energy	U	С
CO3	Understand basic principles of wind energy conversion	U	С
CO4	Understand the basic ideas of geothermal and biomass energy and recognize	U	С
	their merits and demerits		
CO5	Understand the basic ideas of oceans and chemical energy resources and	U	С
	recognize their merits and demerits		

54 hours (Credit – 3)

Semester 5 – Open Course I

PHY5D01(2): AMATEUR ASTRONOMY AND ASTROPHYSICS

	Course Outcome	CI	KC
	Course Outcome	CL	nc
CO1	Describe the history and nature of astronomy as a science	U	С
CO2	Understand the motion of earth in space and the cause of seasons	U	С
CO3	Understand the basic elements of solar system	U	С
CO4	Understand the elementary concepts of solar system	U	С

54 hours (Credit – 3)

Semester - Open Course I

PHY5D01(3): ELEMENTARY MEDICAL PHYSICS

	Course Outcome	CL	KC
CO1	Understand the basic aspects of physics of nuclear medicine	U	С
CO2	Recognize different bioelectric signals and their instrumentation	U	С
CO3	Understand the basic elements of X-ray Imaging	U	C

CO4	Understand the basic elements of ultrasound imaging and its advantages and	U	С
	disadvantages		

Semester 1 – Complementary course-I

PHY1C01: Properties of matter & Thermodynamics

36 hours (Credit - 2)

	Course Outcome	CL	КС
CO1	Understand the basic principles of elasticity	U	С
CO2	Understand the concepts of surface tension	U	С
CO3	Understand the concepts of surface tension	U	С
CO4	Understand the basic principles of thermodynamics	U	С

Semester 2 - Complementary Course II

PHY2C02: Optics, Laser & Electronics

36 hours (Credit - 2)

1

1

	Course Outcome	CL	КС
CO1	Understand the basic concepts of interference and diffraction	U	С
CO2	Understand the concepts of polarization	U	С
CO3	Understand the fundamentals of electronics	U	С
CO4	Understand the important principles of laser physics	U	С

Semester 3 - Complementary Course III

PHY3C03: Mechanics, Relativity, Waves and Oscillations

54 hours (Credit - 3)

	Course Outcome	CL	КС
CO1	Understand the basic ideas of frames of reference and the principles	U	С
	of conservation of energy and momentum		
CO2	Understand the concepts of relativity	U	С
CO3	Understand the basic ideas of oscillations and waves	U	С
CO4	Understand the basic ideas of modern physics	U	С

Semester 4 - Complementary Course IV

PHY4C04: Electricity, Magnetism and Nuclear physics

54 hours (Credit - 3)

	Course Outcome	CL	кс
CO1	Understand the basic ideas of static and current electricity	U	C
CO2	Understand the concepts of magnetism	U	C
CO3	Describe the fundamental concepts of nuclear physics	U	С
CO4	Understand the basic ideas of cosmic rays and elementary particles	U	C

Semester 1 to 4 - Complementary Course V

PHY4C05: PHYSICS PRACTICAL I

36 hours in each semester × 4 (Credit - 5)

	Course Outcome	CL	KC
CO1	Apply and illustrate the concepts of properties of matter through experiments	Ap	Р

CO2	Apply and illustrate the concepts of electricity and	Ap	Р
	magnetism through experiments		
CO3	Apply and illustrate the concepts of optics through experiments	Ap	Р
CO4	Apply and illustrate the principles of electronics through experiments	Ap	Р

PHY1C01-Classical Mechanics

	Course Outcome
CO1	Student will be able to understand the features of generalized coordinates
CO2	Student will be understand the classical background of quantum mechanics
CO3	Student will be analyze Kinematics and Dynamics of Rigid Bodies
CO4	Student will be understand oscillations and Nonlinear oscillations

PHY1C02- Mathematical Physics -I

	Course Outcome
CO1	Student will be able to understand the Detailed features of vectors, matrices and tensors
CO2	Student will be able to analyze differential equations and special functions
CO3	Student will be able to apply the Fourier series in physics

PHY1C03-Electrodynamics and Plasma Physics

	Course Outcome
CO1	Student will be able to understand the features of Time varying fields and Maxwell's
	equations.
CO2	Student will be understand the Plane electromagnetic waves, Transmission lines, Wave
	guides and cavity resonators
CO3	Student will be able to analyze Relativistic electrodynamics,
CO4	Student will be understand Plasma Physics

PHY1C04- Electronics

	Course Outcome
CO1	Student will be able to understand the construction and working of FET &MOSFET
CO2	Student will be able to understand the principle and working of micro photonic devices.
CO3	Student will be able to understand the basic operation of Op –Amp and its applications
CO4	Student will be able to understand the basics of digital electronics and its application

PHY2C05-Quantum Mechanics –I

	Course Outcome
CO1	Student will be able to understand the Formulation of Quantum Mechanics&Modern
	quantum mechanics
CO2	Student will be able to understand the Theory of Angular Momentum
CO3	Student will be able to understand the Invariance Principles and Conservation Laws

PHY2C06- Mathematical Physics

	Course Outcome
CO1	Student will be able to understand the Detailed features of Functions of Complex Variables,
	Group Theory
CO2	Student will be able to analyze Calculus of Variations
CO3	Student will be able to understand the Integral equations & Green's function

PHY2C07- Statistical Mechanics

-

	Course Outcome
CO1	Student will be able to understand The Statistical Basis of thermodynamics
CO2	Student will be able to analyze Microcanonical, Canonical and Grand Canonical Ensembles
CO3	Student will be able to understand Formulation of Quantum Statistics
CO4	Student will be able to understand the difference between Ideal Bose Systems & Ideal Fermi
	Systems

PHY2C08- Computational Physics

	Course Outcome
CO1	Student will be able to understand the Basics of Python programming and will acquire
	skills in writing and executing simple programs .
CO2	Student will be able to understand the applications of Python modules
CO3	Student will be able to understand the basic techniques of numerical analysis and
	apply to physical systems

PHY1L01-General Physics Practical

	Course Outcome
CO1	Apply and illustrate the concepts of properties of matter through experiments
CO2	Apply and illustrate the concepts of electricity and magnetism through experiments
CO3	Apply and illustrate the concepts of optics through experiments
CO4	Apply and illustrate the principles of electronics through experiments

PHY1L02-Electronics Practical

	Course Outcome
CO1	Apply and illustrate the principles of Opamp for mathematical operations through
	experiments
CO2	Apply and illustrate the principles of transistor amplifier through experiments
CO3	Apply and illustrate the principles of digital electronics through experiments

PHY3C09-Quantum Mechanics -II

Г

Т

Course Outcome

CO1	Student will be able to understand the Time-Independent Perturbation Theory&Time-
	dependent perturbation theory
CO2	Student will be able to understand the Variational Method and WKB Method
CO3	Student will be able to understand the Relativistic Quantum Mechanics & Scattering

PHY3C10-Nuclear and Particle Physics

	Course Outcome
C01	Understand the basic aspects of nuclear structure and fundamentals of radioactivity
CO2	Describe the different types of nuclear reactions and their applications
CO3	Understand the principle and working of particle detectors
CO4	Describe the principle of Nuclear electronics
CO5	Understand the basic principles of elementary particle physics

PHY3C11-Solid State Physics

	Course Outcome
C01	Will be able to understand the basic aspects of crystallography in solid state physics
CO2	Understand the phenomena of Lattice Vibrations,
CO3	Understand the Properties of Semiconductors
CO4	Describe the Dielectric, Ferroelectric and magnetic properties
CO5	Describe the phenomena of Superconductivity

PHY3E05-Experimental Techniques

	Course Outcome
CO1	Student will be able to understand the theory of Vacuum
	Techniques, Thin film techniques and Accelerator techniques
CO2	Student will be able to analyze materials by nuclear techniques.
CO3	Student will be able to apply X-ray diffraction technique for
	studying crystal structure

PHY3L05-Modern Physics Practical

	Course Outcome
CO1	Apply and illustrate the concepts of Modern Physics through experiments
CO2	Apply and illustrate the concepts of electricity and magnetism through experiments
CO3	Apply and illustrate the concepts of optics through experiments
CO4	Apply and illustrate the use of G.M counter experiments

Physics Practical PHY4L07-Computational

	Course Outcome
CO1	Student will be able to Apply the Basics of Python programming and will acquire skills in writing and executing simple programs .
CO2	Student will be able to understand the basic techniques of numerical analysis and
CO3	Student will be able to apply python programs to physical systems

PHY4C12-Atomic and Molecular Spectroscopy

	Course Outcome
C01	Student will be able to understand the basics ideas of
	microwave and infra red spectroscopy
CO2	Student will be able to analyze molecules by Electronic
	Spectroscopy.
CO3	Student will be able to understand the basics ideas of
	Raman Spectroscopy.

PHY4E13- Laser Systems, Optical Fibres and Applications

	Course Outcome
CO1	Student will be able to understand the basics laser theory.
CO2	Student will be able to understand the concept of Non linear optics.
CO3	Student will be able to understand the application of laser.
CO4	Student will be able to understand the basics Optic Fibre.

PHY4E20: MICROPROCESSORS, MICROCONTROLLERS AND APPLICATIONS

	Course Outcome
C01	Student will be able to understand the basics Microprocessor.
C02	Student will be able to understand the Timing and control unit of a computer.
C03	Student will be able to understand the Assembly Language Programe.
C04	Student will be able to Apply the Assembly Language Programe for mathematical problems and in physical systems.
C05	Student will be able to understand the basics Microcontroller and its programming

PHY4P01- Project

	Course Outcome
C01	Understand research methodology
CO2	Understand and formulate a research project
CO3	Design and implement a research project
CO4	Identify and enumerate the scope and limitations of a research project